Quadratische Gleichung - Hilfe benötigt
lima-city → Forum → Sonstiges → Schule, Uni und Ausbildung
abziehen
anfang
einheit
endergebnis
ergebnis
fehler
folgender quadratischen gleichung
formel
gleichung
heben
helfen
klammern
multiplikation
quadrat
sagen
url
vorzeichen
wurzel
zahl
ziehen
-
ch brauche Hilfe bei folgender quadratischen Gleichung:
x² + (5-x)² = 17,62cm³
x² + 25 - 10x + x² = 17,62cm²
2x² +25 -10x = 17,62cm² |:2
x² -5x +12,5 = 8,81cm²
Hier komme ich nicht mehr weiter...
könnt ihr mir sagen wie es weiter geht?
Beitrag zuletzt geändert: 17.4.2011 20:56:54 von nellodc -
Diskutiere mit und stelle Fragen: Jetzt kostenlos anmelden!
lima-city: Gratis werbefreier Webspace für deine eigene Homepage
-
du solltest noch weiter umformen, sodass 0 = ... da steht, und dann in die Lösungsformel einsetzten:
https://secure.wikimedia.org/wikipedia/de/wiki/Quadratische_Gleichung -
Mache, wie schon gesagt, dass auf einer Seite der Gleichung nur noch 0 steht. Dann gehst du so vor:
Du halbierst den Wert, der vor dem x steht und kehrst das Vorzeichen um. Das heben wir uns auch für später auf, wir brauchen den Wert nämlich zweimal. Zunächst nehmen wir ihn im Quadrat und ziehen von ihm dem Wert ohne die Multiplikation mit x ab. Aus dem Ergebnis ziehen wir die Wurzel. Die Zahl, die jetzt heraus kommt, kann man zu dem Wert vom Anfang addieren, oder sie von dem Wert vom Anfang abziehen. Beides ist richtig, man bekommt zwei gültige Lösungen. -
burgi schrieb:
du solltest noch weiter umformen, sodass 0 = ... da steht, und dann in die Lösungsformel einsetzten:
https://secure.wikimedia.org/wikipedia/de/wiki/Quadratische_Gleichung
Das habe ich gemacht:
x²-5x-65,1161 = 0
x1/2= - 2/5 +- $(5/2)² + 65,1161$ $ steht für Wurzel
x1= -2,5 + 8,44 = 5,94
x2= -2,5 - 8,44 = -10,94
Das scheint mir aber falsch zu sein :(
Oder ist das richtig? -
Das ist falsch. Einen Fehler sehe ich gerade: Es darf nicht 2/5 heißen, sondern muss 5/2 heißen.
Edit: Noch einen: Wenn das Vorzeichen umgekehrt wird, wird aus einer negativen Zahl eine positive.
Edit2: Ich komme übrigens auf 2,5 plus und minus 1,6. Also auf 4,1 und 0,9. Das funktioniert auch. und sind 8,81.
Beitrag zuletzt geändert: 17.4.2011 22:29:09 von drafed-map -
Ich denke ganz am Anfang sind einige Fehler.
nellodc schrieb:
x² + (5-x)² = 17,62cm³
Erstens ist rechts ein cm und links nicht. Dann kann es schonmal nicht gleich sein....
Zweitens geht es dann statt den cm³ mit cm² weiter.
Wenn man die cm^irgendwas weg lässt kann man die Gleichung denke ich so lösen:
x²-5x+12,5 = 8,81 |-8,81
x²-5x+3,69 = 0 | pq-Formel
x1/2 =- (-5/2) +- Wurzel( (-5/2)² -3,69)
x1 = 4,1
x2 = 0,9
Passt das?
Ich hoffe ich konnte helfen -
Wie ich ja auch geschrieben habe, sind diese Ergebnisse korrekt, ich habe sie auch geprüft. Es ist davon aus zu gehen, dass der TE die Einheit nicht in seine Formel miteinbezieht und sie nur anhängt. Dann sollte man sie aber nur an das Endergebnis anhängen und auch in Klammern schreiben.
-
nie-genug-gewuerzt schrieb:
Ich denke ganz am Anfang sind einige Fehler.
nellodc schrieb:
x² + (5-x)² = 17,62cm³
Erstens ist rechts ein cm und links nicht. Dann kann es schonmal nicht gleich sein....
Zweitens geht es dann statt den cm³ mit cm² weiter.
Wenn man die cm^irgendwas weg lässt kann man die Gleichung denke ich so lösen:
x²-5x+12,5 = 8,81 |-8,81
x²-5x+3,69 = 0 | pq-Formel
x1/2 =- (-5/2) +- Wurzel( (-5/2)² -3,69)
x1 = 4,1
x2 = 0,9
Passt das?
Ich hoffe ich konnte helfen
Hier lag mein Fehler.
Ich hinter dem Istgleich eine Zahl mit ^2.
Das muss dort aber nicht hin.
Danke an alle :) -
Diskutiere mit und stelle Fragen: Jetzt kostenlos anmelden!
lima-city: Gratis werbefreier Webspace für deine eigene Homepage